Probabilistic Tsunami Hazard Analysis

Hong Kie Thio
URS Corp

Tsunami hazard - probabilistic

- Integration over a broad range of seismic sources with varying sizes and recurrence rates
- Formal inclusion of uncertainties through logic trees and distribution functions
- Straightforward for offshore waveheights because of linear approximation (analogous to stiff site condition)
- How do we extend probabilistic offshore waveheights to inundation (i.e. site behaviour)?

Expression of probability

- Assuming Poissonian (time-independent) process:
 - $-P=1-e^{-\gamma t}$, where P= probability of exceedance, $\gamma=$ average annual rate of exceedance and t= exposure time.
 - Average Return Period (ARP) = 1/Average Annual Rate
 - Typical engineering levels:
 - 10% in 50 years -> 475 years ARP
 - 5% in 50 years -> 975 year ARP
 - 2% in 50 years -> 2475 years ARP

Probabilistic Tsunami Hazard Analysis

Aim:

- Determine the probability of exceeding a certain hazard level (e.g. wave amplitude)
- Determine the hazard level that is exceeded for a particular probability (or set of probabilities)

Tsunami Hazard Curve

Application of PTHA

- Performance Based Engineering
 - Chapter on Tsunami Loads in next iteration of ASCE 7
- Risk/Loss modeling
- Land use planning

What is the final product?

- Waveheight
- Inundation
- Flow depth D
- Flow velocity V (maybe at minimum flow depth)
- Momentum, momentum flux
- Drawdown, duration
- Vorticity
- Combinations of the above?

Concepts of Probability

Frequency (aleatory)

- Describes the natural (physical) variability of earthquake processes
- Typically expressed in the form of distribution functions

Judgment (epistemic)

- Expresses the uncertainty in our understanding of earthquake processes
- Included as different branches of a logic tree that each express a different opinion, or belief

What are the largest uncertainties in PTHA?

- Source models
 - Recurrence
 - $-M_{max}$
 - Slip Distribution
- Digital Elevation Models
 - Near-shore Bathymetry
 - Onshore Elevations (SRTM: errors of >10 m)
- Numerical Models
 - Near-shore Propagation/Inundation

Aleatory: Magnitude Distribution

Slip Relations

Crustal

Subduction

Alaska-Aleutian Subduction Zone

USGS model for PSHA:

- Coupling ~50%
- Strong segmentation
- Gutenberg-Richter relation for most segments

				Recur
USGS	All	7-8	-195.0144.0	G-R
	Yakataga	7 – 8.1	-145.5139.5	G-R
	East	9.2	-154.5144.0	Max
	Kodiak	8.8	-154.5149.0	Max
	Semidi	8 – 8.5	-158.0154.0	G-R
	Shumagin	-	-163.0158.0	-
	Western	8-9.2	-190.0163.0	G-R
	Komandorski	8 - 8.2	-195.0190.0	G-R
McCafrey	Alaska	9.5	-144164	Max
	East Aleutian	9.3	-164180	Max
	Western Aleutian	9.3	-180195	Max

Further work for slip models

- Comprehensive scaling relations for subduction zone interface
 - Maximum magnitude
 - Average and maximum slip
 - Concentrate on larger (M > 6.5) events
 - Reduction in sigma?
 - By-pass magnitude scaling?
- Stochastic slip models

Source recurrence model

- Generic model
 - Mmax based on Lmax
 - Recurrence rate based on plate motions
- Specific model
 - Mmax, recurrence based on instrumental, hstoric and paleo-tsunami observations
 - Inferences from tectonic models (e.g. Marianas vs Chile type subduction)
- Increased weight on specific model depending on completeness and duration of catalog

Aleatory Uncertainty from Scenario Modeling

Benchmarking - Okushiri

Effect of Variability on Hazard Curves

Effect of Tides on PTHA

Santa_Monica_CA-0

Variability of global DEM's

How and where do we apply our uncertainties

Source

- In many ways similar to seismic
- Variability in slip and scaling are important

Offshore

Straightforward in case of probabilistic exceedance amplitudes

Onshore

- Difficult due to strong non-linearity
- May need to apply on the offshore waveheights and propagate in

Offshore waveheight hazard

Source disaggregation

Morro_Bay-475yr

San_Pedro-475yr

Cascadia Model

- Mw=8.1-9.2
- $D_{\text{max}} = 2 D_{\text{ave}}$
- Asperities 1/3 of total rupture (x3)
- Narrow and wide models (x2)
- With and without splay (x2)

Cascadia Probabilistic Inundation Maps

Morro_Bay-0.96c

Monterey-0.96c

Ventura-0.96c

Santa_Monica-0.96c

Huntington_Beach-0.96c

33.775°
33.725°
33.7°
-118138.2768.268.2258128.4768.118.1258118.0768.068.02518°

POLA-0.96c

Oceanside-0.96c

San_Diego-0.96c

Conclusion

- Important to quantify uncertainties in every stage of the hazard model, including modeling uncertainties
- Aleatory variability in rupture models should be included
- Close coordination between the USGS Seismic Hazard Mapping program and NTHMP

PTHA Inundation in Hawaii

Probabilistic offshore waveheight

Exceedance waveheights: 975 yr

